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ABSTRACT
Motivation: The well-known Sankoff algorithm for simulta-
neous RNA sequence alignment and folding is currently con-
sidered an ideal, but computationally over-expensive method.
Available tools implement this algorithm under various prag-
matic restrictions. They are still costly to use, and it is difficult
to judge if the moderate quality of results is due to the
underlying model or to its imperfect implementation.
Results: We propose to re-define the consensus structure
prediction problem in a way that does not imply a multiple
sequence alignment step. For a family of RNA sequences,
our method explicitly and independently enumerates the near-
optimal abstract shape space, and predicts as the consen-
sus an abstract shape common to all sequences. For each
sequence, it delivers the thermodynamically best structure
which has this common shape. As the shape space is much
smaller than the structure space, and identification of com-
mon shapes can be done in linear time (in the number of
shapes considered), the method is essentially linear in the
number of sequences. Our evaluation shows that the new
method compares favorably with available alternatives.
Availability: The new method has been implemented in the
program RNAcast and is available on the Bielefeld Bioinfor-
matics Server.
Contact: {robert,jreeder}@TechFak.Uni-Bielefeld.DE

INTRODUCTION
The role of RNA in all organisms is much broader and more
fundamental than it was considered only recently (Leeet al.,
1993; Mattick and Gagen, 2001; Lee and Ambros, 2001;
Skryabinet al., 2003; Pfefferet al., 2004). With non-coding
RNA, the structure of the molecule is often essential for its
function. In analogy to coding RNA, where a conserved enco-
ded protein hints at a similar metabolic function, structural
conservation in RNA may give clues to RNA function and
to finding of RNA genes. However, structure conservation is
more complex to deal with computationally than sequence
conservation.

Comparative structure prediction and the Sankoff
algorithm
The secondary structure of RNA – the level of base pairing
– strongly determines the tertiary structure. As the latter is
computationally intractable and experimentally expensive to
obtain, secondary structure analysis has become an accep-
ted substitute. Early computational approaches to secondary

structure prediction were (Nussinovet al., 1978) and (Water-
man and Smith, 1978). Today’s methods use minimum free
energy folding, pioneered by Zuker and Stiegler (1981). Such
methods are widely used today, although it is known that
their results are not completely reliable (Doshiet al., 2004).
Better results are generally achieved by comparative analysis
of a family of homologous sequences, where sequence and
structure conservation is exploited, using a resolved tertiary
structure whenever available, sequence alignment, statistical
methods, and human expertise (Gutellet al., 1992).

A first comparative approach based on thermodynamics
was formulated by Sankoff as early as 1985 (Sankoff, 1985),
which performs sequence alignment and minimal free energy
folding simultaneously. Its time complexity isO(n6), with
spaceO(n4), for two sequences of lengthn, and for
more sequences, it becomes exponential in the number of
sequences. Given these high computational costs, it seemed
unlikely that this algorithm would ever be put into practice.
For many years, it rested in oblivion.

Recently, however, interest in comparative methods for
RNA structure prediction has been nurtured by findings on
the functional versatility of RNA, and several related approa-
ches have been suggested. Some emphasize the sequence
conservation aspect, folding a predetermined sequence ali-
gnment under thermodynamic rules (RNAalifold, Hofacker
et al., 2002). The other extreme emphasizes thermodynamics
and suggests to use multiple structure alignments of inde-
pendently folded sequences (Höchsmannet al., 2004). Other
approaches directly implement Sankoff’s idea of simulta-
neous alignment and folding, but introduce various pragmatic
restrictions, e.g.Dynalign (Mathews and Turner, 2002) and
Foldalign (Gorodkin et al., 1997). For a recent review of
these and other tools, the reader is referred to the study of
Gardner and Giegerich (2004).

Behind all these approaches, there is the original Sankoff
approach as the ideal method — the one that every pro-
gram tries to approximate in different ways. “Making Sankoff
practical” has been a recurring theme at the meetings of the
computational RNA community. However, this road may
require so many pragmatic restrictions that the ideal looses
much of its attraction.

A way out of this dilemma may be to change the definition
of a consensus structure. In Sankoff’s approach, the consen-
sus is a folded sequence alignment that optimizes a combined
sequence similarity and energy score. What if we drop the
implicit multiple sequence alignment step (as this problem
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is known to be NP-complete)? Let us agree that a consen-
sus structure for sequencess1, . . . , sk is a set of structures
x1, . . . , xk, one for eachsi, that all have – in some mathema-
tically precise sense – a common shape. Should a sequence
alignment ofs1, . . . , sk, compatible with the consensus, also
be desired, it may be computed afterwards fromx1, . . . , xk,
rather than froms1, . . . , sk, by multiplestructurealignment
(Höchsmannet al., 2004). The latter phase will certainly need
to resort to heuristics, but for the first phase, there may be a
chance to achieve a complete and non-heuristic solution in
acceptable time.

An alternative to the Sankoff method
A hypothetical method To explain our new approach, let us
first consider a hypothetical, exhaustive method. Lets1 and
s2 be two RNA sequences, both of lengthn. Let us enume-
rate their foldings in order of increasing free energy, yielding
x1, x2, . . . , xN1 for s1 andy1, y2, . . . , yN2 for s2. The num-
bersN1 andN2 will be very large, even for smalln, but let
us ignore this for the moment.

If s1 ands2 have a common structure, there must bexi =
yj for somei andj. In fact there may be more such pairs. We
rank them by(i + j), and the pair(xi, yj) with minimal rank
is our predicted consensus. Just as well, we may produce the
k top-ranking consensus pairs.

Using known algorithmic techniques, we can imple-
ment the enumeration inO(n3 + n(N1 + N2)) time and
O(n2) space, and the identification of common structures in
O(n(N1 + N2)) time and space, where we represent struc-
tures as strings and employ keyword or suffix trees for fast
identity matching. Clearly, if we add a third sequences3, with
structuresz1, z2, . . . , zN3 , the(N1 + N2) above is replaced
by (N1 + N2 + N3), and hence, this method is additive in
the number of sequences! Too bad it is not practical for the
following two reasons:

• The numbersN1, N2, . . . are very large andNi grows
exponentially withn. Even if we restrict enumeration
to an energy range of say 10% above the minimal free
energy,Ni may be large as 100 000 or 1 000 000. This
alone might not be a threat on today’s computers, but
here is our second problem:

• Sequencess1 ands2 need not to have the same length,
and hence their structures cannot be identical. We must
allow for some flexibility in the relative position of
helices. Therefore, we need to resort to some pairwise
similarity computation, catapulting computation time of
the identification phase toO(n2 ·N1 ·N2) or higher. The
additive behaviour is lost.

To make our hypothetical method practical, we need to
restrict enumeration to a small, but representative sample of
the folding space, and achieve identification of consensus
pairs in linear time in spite of their not being identical.

Outline of the consensus shapes prediction methodWe
build on the recent approach of abstract RNA shape analysis
(Giegerichet al., 2004) to solve both of the above problems.
Deferring formal definitions, a shape is a family of structures,

sharing a common pattern of helix nesting and adjacency. The
near-optimal folding space contains only a (relatively) small
number of shapes. Using abstract shape analysis, we enume-
rate representative structures – one per shape, and only those!
– for boths1 ands2. The highest ranking structure pairxi and
yj , where both have the same shape, then forms our consen-
sus pair. While the structuresxi andyj are only similar, their
shapes can be easily computed, and identity matching on sha-
pes can be implemented in timeO(n·(N1+N2)) as sketched
above – for significantly reducedN1 andN2.

These ideas will be rigorously described in the sequel, and
we shall report on their implementation and evaluation.

RNA SHAPE ANALYSIS AND CONSENSUS
SHAPES
Abstract shapes
We recall the basic definitions of abstract shape analysis.

• An RNA sequences has folding spaceF(s), the set
of all admissible structures under the given base-pairing
rules. For each structurex ∈ F(s), we can compute its
free energyE(x).

• The minimal free energy structure mfe(s) for a
sequences is the structurex ∈ F(s) whereE(x) is
minimal.

• For efficient computation of shapes via dynamic pro-
gramming, they have to be represented as trees. LetS
be the tree-like domain of structures, andP a tree-like
domain of shapes. Ashape abstractionis a mappingπ
fromS toP that preserves juxtaposition and embedding.

• The abstract shape spaceof sequences is P(s) =
{π(x)|x ∈ F(s)}. The class ofp-shaped structures in
F(s) is {x|x ∈ F(s), π(x) = p}.

• Theshape representative structurêp ∈ F(s) for shape
p is the structure whose free energy is minimal among all
members of that shape class. We call itshrepfor short.

Abstract shape analysis, as implemented by the program
RNAshapes, is computed for an RNA sequences and an
energy rangeR. It delivers a list[(p1, p̂1), . . . (pk, p̂k)] with
the following properties:

• thepi are different shapes, and thep̂i are their respective
shreps,

• the list is ordered by increasing energy:mfe(s) = p̂1

andE(p̂i) ≤ E(p̂i+1),
• the list is restricted to the energy range indicated byR :

E(p̂i) ≤ E(mfe(s)) + R,

• the list completely covers this energy range in the
abstract shape space: there is no shapepk+1 such that
E(p̂k+1) ≤ E(p̂1) + R

The strength of shape analysis lies in four aspects (for details
see Giegerichet al., 2004):

• It produces a non-heuristic, mathematically well defined
synoptic view of the near-optimal folding space, allo-
wing us to concentrate on a small number of shreps. The
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Table 1. Definition of level-5 and level-3 shape abstractions.s ands′ denote
a non-empty, well-balanced dot-bracket string, andε denotes the empty
string. Brackets in the input/output string are written in bold face. Note that
difference lies with%5 versus%3, where the former reads across bulges and
internal loops, while the latter decides to record a new helix part with every
interruption.

π5(.) = ε %5(.) = ε
π5(.s) = π5(s) %5(.s) = %5(s)
π5(s.) = π5(s) %5(s.) = %5(s)
π5((s)) = [%5(s)] %5((s)) = %5(s)
π5((s)s′) = [%5(s)]π5(s′) %5((s)s′) = π5((s)s′)

π3(.) = ε %3((s)) = %3(s)
π3(.s) = π3(s) %3(s) = π3(s)
π3(s.) = π3(s) in all other cases
π3((s)) = [%3(s)]
π3((s)s′) = [%3(s)]π3(s′)

size of the most abstract shape space grows approxima-
tely with size(P(s)) ≈ 0.21∗1.1n, while in contrast the
structure space grows withsize(F(s)) ≈ 0.04 ∗ 1.4n).

• Shape analysis runs in the same asymptotic space and
time complexity as suboptimal RNA folding.

• Shapes are meaningful across sequences, hence lend
themselves to a comparative approach. This aspect is
exploited here for the first time.

• The approach is generic with respect to the shape
abstraction(π) that is actually used. Shapes can be
more or less abstract, depending on the level of detail
considered relevant.

We illustrate the latter point by defining two shape abstrac-
tions used in this study. In general, shape abstractions retain
nesting and adjacency of helices, but disregard their size
and concrete position in the primary sequence. They may
choose to retain or to discard bulges and internal loops,
which leads to different levels of abstraction. “Level 5” is
the strongest abstraction and does not account for bulges etc.
at all. “Level 3” retains helix interruptions, but does not spe-
cify whether they result from 5’-bulges, 3’-bulges or internal
loops.

As we are not concerned with the algorithmics of shape
analysis here, we can forget about tree-like representati-
ons of structures and shapes, and define shape abstrac-
tions as mappings from the more familiar string repre-
sentations of structures to string representations of sha-
pes. Structures are represented as dot-bracket strings, e.g.
“ (((..((..(((...))))).((...))..))) ”. The level-5-
shape of this structure is represented as“ [[][]] ” , its level-
3-shape as“ [[[]][]] ” . In Table 1, we provide equations
defining shape abstractionsπ5 andπ3.

The rule about the choice of abstraction level is that we
generally prefer to work with the less abstract Level 3, except

Table 2. Ranks of true shape in the list of near-optimal shapes using
RNAshapes.

rank of true shape 1 2 3 4 5 5-9 10-19 20+ total

lin4 9 0 0 0 0 0 0 0 9
IRES 5 2 0 0 0 0 0 0 7
tRNA 3 1 5 2 0 0 0 0 11
srp RNA 2 2 0 0 0 0 0 0 4
riboswitch 7 0 0 0 0 0 0 0 7
S box 4 5 2 0 0 0 0 0 11
5S rRNA 1 2 0 1 0 1 0 0 5
U12 RNA 0 0 0 0 1 0 1 4 6
U1 RNA 1 1 0 1 0 0 1 0 4
U2 RNA 0 0 0 0 0 3 0 2 5

for long molecules where a stronger abstraction speeds up the
program because the shape space is reduced further.

Rankings of true shapes
In order to evaluate whether shape analysis bears promise
towards consensus prediction, we performed two prelimi-
nary studies, using several sequence families from Rfam
(Griffiths-Joneset al., 2003) and other data bases (Sprinzl
et al. (1998), Szymanskiet al. (2000), Witweret al. (2001),
Rosenbladet al. (2003)) where the “true” structures is
known. From this true structure, we can compute the “true”
shapep∗ = π(s). Question 1 asks for the ranki such that
pi = p∗ in the list of shapes returned by shape analysis. Table
2 shows the outcome. The average rank of the true shape is
5.06, where in32 out of 69 cases (46%) the true shape has
rank 1.

The advantage of shape analysis over complete subopti-
mal folding (Wuchtyet al., 1998) is witnessed by two detail
observations: For one of the tRNA sequences, the true shape
has rank 3, while the true structure has rank 104 in the com-
plete enumeration. In the worst case observed, an U12 RNA
sequence, the true shape has rank 28, while its associated true
structure has rank 3 695 033. This confirms our hope that the
shape space is small enough to completely enumerate its inte-
resting part. But it also confirms that the reliability (in terms
of shape) of single sequence folding lies around 46% – not
useless, but not dependable either.

Question 2 asks whether this improves when we move
towards a comparative approach by using pairs of sequences.
In Table 3 we consider all pairs of predictions (within each
family), and report on the rank of the true shape in the list
of all commonshapes. In the pairwise approach, the average
rank of the true shape improves to3.13, and the true shape
now has rank 1 in 128 out of 235 cases (53%). We conclude
that the power of comparative analysis is well captured by our
approach, and expect even better performance from using 3
or more sequences.

Consensus shape prediction
We now summarize the proposed method of consensus shape
prediction.

3



J. Reeder and R. Giegerich

Table 3. This histogram shows the rank of the reference shape in all pairwise
predictions.

rank of true shape 1 2 3 4 5≥ 6 total

lin4 microRNA 36 0 0 0 0 0 36
IRES 11 10 0 0 0 0 21
tRNA 22 22 11 0 0 0 55
srp RNA 5 1 0 0 0 0 6
riboswitch 21 0 0 0 0 0 21
sbox RNA 21 31 3 0 0 0 55
5S RNA 8 1 1 0 0 0 10
U12 RNA 0 3 0 0 0 12 15
U1 RNA 4 0 1 0 1 0 6
U2 RNA 0 0 0 0 0 10 10

For a set of sequences{s1, . . . , sk}, intentionally a family
of related RNA sequences, we enumerate their shape spaces
P(s1), . . . ,P(sk). Upon those, we define:

DEFINITION 1. A shape p is a common shapeof
{s1, . . . , sk} if p ∈

⋂k
i=1 P(si).

DEFINITION 2. The consensus shapefor sequences
{s1, . . . , sk} is the common shapep that minimizes
rank(p̂1, . . . , p̂k).

Here,rank is a scoring function that combines the indivi-
dual shrep scores. We will discuss several meaningful scoring
functions in the Algorithms part.

Note, that the above definitions do not only yield the con-
sensus shape, but moreover, from shape analysis we also
get the set of shreps – the resulting output is a(k + 1)-
tuple(p, [p̂1, . . . , p̂k]). These shreps constitute an (unaligned)
multiple RNA structure prediction for the input sequences.

ALGORITHM IMPLEMENTATION
The program RNAcast
The above method has been implemented by the program
RNAcast, which stems from “RNA consensus abstract sha-
pes technique”. Although most of the method is clear from
our definition of the consensus shape, a few details remain to
be fixed.

Step 1.Our algorithm starts with sequencess1, . . . , sk as
input, and an energy thresholdR. Let n be their average
length. We runRNAshapeson each individual sequence with
the provided energy rangeR. Theoretically every sequence
could have its ownR, but in practice we use only one.

Step 2. Within the k resulting lists (the shape spaces),
we identify all shapes that occur in all the lists. We use
hashing techniques for fast identity matching of shapes. Thus
this phase runs in a time proportional tok · |P(s1)|. After
this step, we have a list of alll common shapes, together
with their shreps:[(p1, [p̂1

1, . . . , p̂
1
k]), . . . , (pl, [p̂l

1, . . . , p̂
l
k])].

Usually, there are much less common shapes, than there are
shapes inP(s1), . . . ,P(sk).

Step 3We evaluate each common shape with the scoring
function and yield a sorted list of all common shapes. The

first shape of this list is returned as the consensus shape,
along with its shreps. If desired, ther ≤ l best common
shapes can be reported as well.

We propose to use the output ofRNAcastas input forRNA-
forester(Höchsmannet al., 2004), a multiple RNA structure
alignment program. The unalignedRNAcastoutput is shown
in Figure 1. The resulting alignment is shown in Figure 2.

Left to be defined is the scoring functionrank. We propose
three different possibilities:

1. Rank sum score: Each shrep contributes with its indi-
vidual rank in the sorted shape space of its sequence:
rank1(pi, p̂

i
1, . . . , p̂

i
k) = rank(p̂i

1) + · · ·+ rank(p̂i
k)

2. Sum of energies:
rank2(pi, p̂

i
1, . . . , p̂

i
k) = E(p̂i

1) + · · ·+ E(p̂i
k)

3. Sum of probabilities:
rank3(pi, p̂

i
1, . . . , p̂

i
k) = Prob(p̂i

1) + · · · + Prob(p̂i
k),

whereProb(...) are the probabilities coming from the
partition function (McCaskill, 1990), requiring extra
O(k · n3) steps to compute.

Overall, it turned out thatrank2, the simple sum of ener-
gies, performs best, followed byrank3 and at last the rank
sum score. However, prediction accuracy for all three scoring
function does not differ much. The method seems to be rela-
tively robust, concerning the choice of scoring function. We
decided to userank2 for all computations discussed in this
article.

EVALUATION
In our preliminary tests, we evaluated that our method is
capable to identify the correct shape in 53% of all pairwise
predictions. When we are usingRNAcastin the multiple way,
the correct shape is predicted for 6 out of 10 families and for
three further families the true shape is on rank two or three.
But predicting the correct shape alone is not good enough.
Within a shape class, there is considerable structural variation
possible. Since shapes abstract from concrete helix positions
and sizes, it it theoretically possible that the shrep of a correct
shape does not share a single base pair with the true structure.

In this section we evaluate the accuracy achieved by
RNAcaston the base-pair level and compare it to other tools.

In particular we will answer the following questions:

1. How accurate are the shreps, given the correct shape?

2. What is the improvement over single sequence folding
algorithms?

3. How doesRNAcastperform compared to other pairwise
and multiple folding algorithms?

4. What are the reasons for wrong predictions?

We evaluate the structure predictions in terms of sensitivity,
selectivity, and the Matthews correlation coefficient (MCC):

MCC =
TP · TN − FP · FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

True positive (TP) are base pairs in the prediction, that are
also found in the reference. True negatives (TN) are correctly
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Shape: [[[]][][]] Score: -223.50
CCUUUGCAGGCAGCGGAAAUCCCCACCUGGUAACAGGUGCCUCUGCGGCCAAAAGCCACGUGUAUAAGAUACACCUGCAAAGG
((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) (-34.10) R = 2
CCUUUGCAGGCAGCGGAAUCCCCCACCUGGUGACAGGUGCCUCUGCGGCCGAAAGCCACGUGUGUAAGACACACCUGCAAAGG
((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) (-39.10) R = 2
GCACGCAAGCCGCGGGAACUCCCCCUUGGUAACAAGGACCCGCGGGGCCGAAAGCCACGUUCUCUGAACCUUGCGUGU
((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((...))))))))))))) (-34.10) R = 2
GCAUGAUGGCUGUGGGAACUCCCCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGUCCUCACGGACCCAUCAUGC
((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((....))))))))))))) (-34.70) R = 3
GCAUGACGGCCGUGGGAACUCCUCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGCCCACACGGGCCCGUCAUGU
((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) (-41.90) R = 1
GCAUGUUGGCCGUGGGAACACCUCCUUGGUAACAAGGACCCACGGGGCCGAAAGCCAUGUCCUAACGGACCCAACAUGU
((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) (-39.60) R = 1

Fig. 1. Example output for a family of IRES elements of Picornaviridae viruses. It first shows the common shape and the achieved score.
Thereafter, for each input RNA and not aligned, there is the sequence, the predicted shrep, its energy, and its individual rank in the shape
space.

Fig. 2. Two multiple RNA structure alignments of five 5S rRNAs computed byRNAforester. On the left-hand side is the alignment of
the structures as found in the data base (Szymanskiet al., 2000). On the right-hand side, the output shreps ofRNAcastserved as input
for the alignment. Obviously, the structures are similar, withRNAcastpredicting a few additionalcompatiblebase-pairs. The alignment
visualisations should be interpreted as follows: The frequencies of the bases a,c,g,u are proportional to the radius of circles that are arranged
for each residue clockwise on the corners of a square, starting at the upper left corner. Additionally, these circles are colored red, green, blue,
magenta for the bases A, C, G, U, respectively. The frequency of a gap is proportional to a black circle growing at the center of the square.

predicted unpaired bases and false negatives (FN) are base-
pairs in the reference, that were not predicted. No slipping
of helices is allowed. For false positives (FP) we use the
counting method proposed by Gardner and Giegerich (2004):
Predicted basepairs, that do not occur in the reference struc-
ture, but arecompatiblewith it, are not counted for FP. A
base-pairi · j is compatibleif neitheri nor j is paired to ano-
ther base in the reference and there is no other base-pairk · l
that violates the nesting convention (i.e.k < i < l < j). This
assumption is meaningful, since the reference structures used
in this study often come as a consensus. The members of a
specific RNA family share all basepairs in the consensus, but
may have additional ones.

Accuracy of the true shrep
Let us first assume, that we already know the correct shape of
the family under evaluation. We are then asking for the cor-
responding shreps. We either look them up in theRNAshapes
output, or we generate an RNA folding program restricted to
that specific shape and compute the optimal structure directly.

We did this for the same set of RNA families as used in the
preliminary study and evaluated the accuracy of the shreps.

On average, the sensitivity is 78.2% and selectivity is
78.6%, compared to 65.4% and 65% for the mfe-prediction
of the single sequence. This shows, that knowing the cor-
rect shape improves secondary structure prediction of single
sequences significantly. However, in most realistic cases we
do not know the true shape in advance. The best we can do
then is to rely on the consensus shape computed byRNAcast.
Note that, even when the predicted consensus shape is incor-
rect, it still may be close to the correct shape, in which case
the predicted structures may also come close to the truth.

Improvement over single sequence prediction
We now evaluate the accuracy of the structures predicted by
RNAcast, whether or not the predicted shape is correct.

We folded each RNA family in five different ways:

1. Single sequence prediction usingRNAfold (Hofacker
et al., 1994)
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Fig. 3. Accuracy (MCC) ofRNAcaston a set of RNA families,
sorted by size. The bars correspond from left to right toRNAfold,
RNAcastpairwise,RNAcastmultiple (bothπ5), RNAcastpairwise,
RNAcastmultiple (bothπ3).

2+4. RNAcast on all pairwise combinations using shape
abstractionπ5 andπ3 and

3+5. RNAcastin a multiple way on all family members, again
in each case withπ5 andπ3.

In Figure 3 we plot the (average) MCC of each prediction
method. We can see, that “going comparative” pays off: In
all cases but one (multiple tRNA folding withπ5) RNAcast
performs better than single sequence prediction . The clover-
leaf prediction for tRNA failed - one arm of the cloverleaf
was missed. However, using the less abstract shape map-
ping yields the correct shape and a higher accuracy. We can
further see, that using multiple sequences increases the relia-
bility of prediction. Overall,π3 gives the highest accuracy,
especially for shorter sequences (≤ 150 bases.), where addi-
tional bulges or internal loops may be more important than in
longer sequences. The averaged MCC forRNAcastmultiple
with shape abstractionπ3 is 0.77. This is a definite increase,
compared to 0.64 for single sequence prediction.

Next we relate our method to existing comparative tools.

Comparison to the Sankoff approach
Comparison to Dynalign: Dynalignwas chosen as a
state-of-the-art representative of the Sankoff approach. In
(Mathews and Turner, 2002) the sensitivity ofDynalign is
measured on a set of 5S rRNA. We found a secondary struc-
ture for five sequences of that set in the database (Szymanski
et al., 2000) and evaluatedRNAcaston them. Single sequence
prediction performs relatively bad on this data set (see row
RNAfold in Table 4). UsingRNAcastin a pairwise fashion
improves the accuracy clearly, but still is not satisfying. For
Dynalign (pairwise only) we compute an average sensitivity
of 84.2%. This is only topped by runningRNAcastmultiple
on five sequences simultaneously. The sensitivity is 92% and
selectivity is almost perfect at 97.8%.

Table 4. Prediction accuracy for a set of 5S rRNA. Note: The evaluation of
Dynalignby Mathews and Turner (2002) allows for slipping helices, which
we do not allow in our evaluation.

Program Sens. Sel. Corr.

RNAfold 43.08 41.2 0.41
Dynalign 84.20 - -
RNAcast (pairwise)π3 59.10 62.40 0.60
RNAcast (multiple)π3 91.98 97.82 0.95

Table 5. Comparison to the Gardner study.RNAcastuses shape abstraction
π5. TheDynalignRNAse P results may improve for a larger window size.

RNAcast RNAcast Carnac Dynalign
pairwise multiple

Sens. Corr. Sens. Corr. Sens. Corr. Sens. Corr.

tRNA 45.2 0.49 71.4 0.75 71.4 0.81 54.78 0.54
RNAseP 61.3 0.58 65.6 0.63 64.9 0.79 31.95 0.32

Comparison to “Plan B”: Recently, several multiple RNA
folding algorithms were evaluated by Gardner and Giege-
rich (2004). The study included three different approaches,
where “Plan B” referred to tools that approximate the Sankoff
approach of simultaneous alignment and folding. We choose
the S.cerevisiae tRNA-PHE (11 sequences, high sequence
similarity) and the E.coli RNAse P (5 sequences, medium
similarity) data sets from that study and compare the pre-
diction accuracies. SinceDynalign permits only pairwise
folding, Gardner et al. folded the reference sequence with
each of the other sequences at a time. We did the same
with our program. The corresponding results are in column
“pairwise” and “Dynalign” in Table 5. Carnac (Touzet and
Perriquet, 2004) can fold multiple sequences and performed
quite well in the study. Naturally, our method yields much
better results for a multiple sequence input than for only two
sequences (see column “multiple”). The sensitivity is com-
parable to Carnac, which in turn is almost perfectly selective,
and thus has a better correlation.

Detailed analysis of mispredictions
Overall, we observed 107 cases whereRNAcastwas not able
to find the true shape. But how bad are the wrong shapes? By
visual inspection we could classify a few recurring situations,
listed in Table 6.

In three cases, all tRNA,RNAcastpredicts an additional
hairpin, not mentioned in the database. This hairpin is the
variable arm and therefore predicted correctly. Quite often,
we found that parts of the reference structure were enclosed
by an additional helix, thus forming a multiloop. In our point
of view, this situation could not be counted as false, either.
It further confirms our choice not to countcompatiblebase-
pairs as false positives. Another point of error was the loss of
one hairpin in 22 cases. Instead of the hairpin, we either see a
single-stranded region or the region is consumed by the pro-
longation of a neighboring helix. Nevertheless the remaining
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structure is accurate. All remaining cases (41) differ substan-
tially from the reference and have to be counted as wrong
predictions without an excuse.

In general, the accuracy for the first three situations is still
rather high on the base pair level, in fact higher than single
sequence predictions. Usually, sequences for whichRNAcast
predicts a wrong shape have a low accuracy and are poorly
predicted byRNAfold, too.

Efficiency
As is to be expected from the asymptotic analysis, the effi-
ciency of RNAcastis quite good. It strongly depends on
RNAshapes’ efficiency, which has been optimized recently.
On a typical sequence pair of tRNAs (72 and 75 nucleotides)
running time remains under a second, whileDynalign takes
488 s (see Table 7). Adding more sequences of similar size
increases the runtime only linearly: 10 tRNAs are processed
within 5 seconds. Since the calls toRNAshapesare indepen-
dent of each other, they can execute in parallel. The RNAse P
example (5 sequences of about 240 bases each) withπ5 can
actually be done in 12 seconds.

DISCUSSION
Differences to the Sankoff notion of consensus
Let us once more relateRNAcastto Dynalign, which is the
best available approximation to the Sankoff algorithm. It is
important to keep in mind that while the Sankoff algorithm
can, in principle, maximize sequence similarity alongside
with free energy minimization, itsDynalign implementa-
tion minimizes gap penalties, but otherwise ignores sequence
content.

The quantitative results in the previous section show that
the new alternative method is comparable or better in the qua-
lity of predictions, and much faster computationally. In that
section, results from both tools were compared to a “gold
standard”, which is much easier than comparing them to each
other, because they pursue different objectives.

Remember that we have not presented another approach to
implement the Sankoff algorithm, but we have significantly
changed the problem definition. While the Sankoff approach
determines a sequence alignment reflecting a common set of
base pairs, consensus shape prediction produces a consen-
sus abstract shape together with its shrep for each sequence,
but no alignment. Since this deviates from the traditional and
accepted notion, let us discuss common aspects as well as
differences from a conceptual point of view.

The Sankoff approach produces sequences aligned accor-
ding to the predicted common base pairs, hence with the
same Level 5 shape. However, their Level 3 shapes may be
different, as some sequences may have gaps where others
have bulges. In either case, the structures reported are not
necessarily the shreps of their respective shapes. One may
refold the structures individually, with the consensus base
pairs fixed, but then the refolded structures may be “out of
shape” because they exhibit additional hairpins.

RNAcastpredictions are unaligned. Using the predicted
shreps, a multiple structure alignment may be obtained via

RNAforesteror a similar structure alignment tools. From the
structure alignment, a sequence alignment consistent with the
consensus shape may be easily derived. The structure ali-
gnment also minimizes the number of gaps, but in contrast
to the Sankoff approach, it does soafter structure prediction,
and not simultaneously. Hence, one may expect cases where
the Sankoff approach produces results that fix more strongly
the relative positions of helices, while withRNAcast, conser-
ved helices may move more flexibly. However, we have not
observed this effect to a significant amount in our studies.

Potential improvements
Reality differs from our evaluation scenario. Database fami-
lies can be considered reliable homologues, but when a new
(putative) family is investigated, we cannot be sure whether
structure is preserved. With consensus shape prediction, we
would like to implement a safeguard against members in the
sequence set that really do not share the common shape of
the rest. Such a situation will result most likely in a con-
sensus garbage. We expect that leave-one-out tests can be
designed to recognize this situation. Such tests can be imple-
mented efficiently, because only Steps 2 and 3 of theRNAcast
algorithm, but not the most costly Step 1 must be iterated.

We have performed an overall evaluation of our new
method, but not yet tried to optimally adjust it to particu-
lar data sets. For example, when studying short molecules
like microRNA precursors, Level 2 abstraction, which distin-
guishes 5’-, 3’- bulges and internal loops, might be more
conclusive than level 3. More systematic study and experi-
ence is needed to provide guidance about the most conclusive
level of shape abstraction to be used in a particular context.
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