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1 Introduction
Microbiologists require tools that can group closely related organisms at various levels of resolution.
They also require a method that can discern the phylogenetic relationship between groups. This is espe-
cially important for the study of microbial pathogens and their epidemics, where the origin and diversity
of pathogenic strains is a central concern [1, 11, 12]. One method used for distinguishing between differ-
ent strains of pathogenic bacteria is multi-locus sequence typing (MLST) [5, 7]. In brief, MLST consists
of identifying specific loci on the genome that code for neutral (and hence conserved) house-keeping
genes. For each locus, a fragment of approximately 500bp is sequenced, and each unique sequence is
assigned an arbitrary allelic label. Hence, given m loci, each individual MLST entry consists of a vector
S of length m (for example m = 7), whereby each vector component si is an integer corresponding to
the allele number. An MLST data set consists of an ordered set of vectors of type S. Each unique vector
S is also given a label and referred to as a sequence-type or ST (eg. ST1).

MLST has proven to be a reliable method for identifying different strains within a bacterial species,
provided that the loci chosen for analysis exhibit a sufficient amount of allelic variation [12]. However
the analysis of MLST data sets for discerning higher order phylogenetic relationships has proven to be
more difficult due to the fact that bacterial populations exhibit a high rate of recombination, see Feil
et al. [3]. An intermediate approach for discerning phylogenetic groupings has been to cluster closely
related STs into distinct groups. Each group is referred to as an ST complex. However there is no
standardized methodology for identifying ST complexes across bacterial species. Assignment to different
ST complexes has been so far performed by the convergence of different heuristic methods, such as
eBURST, split decomposition and consensus estimations by epidemiologists, for example see Jolley et al.
[5]. The fact that ST complex assignment is performed by the selective use of different methodologies,
points to the need for a single method that can identify ST complexes based on a set of prescribed
objective criteria.

Our method is to model a set of STs as a connected weighted undirected graph and find a k-partition
of a vertex set in a graph by successively solving bipartition problems. The objective functions considered
in the next section will provide a simple quality measure of a cluster without the need for information
about the evolution of prokaryotes which is difficult to reconstruct. In this paper, our goal is to investigate
if there is a statistical significance of biological groups derived from our clustering method.

2 Method
We address the problem of identifying k groups of sequence types (STs) as a k-way graph cut in which k
is not known. We first convert the set of m sequence types into a fully connected undirected graph. The
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m the number of locus
si allele number ∈ N, i ∈ {1, ..., m}
Si an ordered vector for a sequence type, i ∈ {1, ..., n}
V a vertex set, each vertex is Si

Table 1: Notations.

graph is defined as G = (V,E) where V is the set of nodes representing all STs and E is a set of edges
e(i, j) with weights w(i, j), which are set to the similarity score between two sequence types: S i and
Sj . A node i in G represents a unique sequence type Si. The choice of the similarity function depends
on the data set, but they are constrained to be non-negative and symmetric. In this view, the problem of
clustering unlabeled STs into k groups can be reduced to partitioning a vertex set V into k partitions. The
problem of finding a k-partition can now be formulated as the problem of partitioning V into k subsets,
V = ∪ki=1Vi.

Let us consider the problem of finding a k = 2 partition, say V = A ∪ B. This can be achieved by
removing edges {i, j} from E for which i ∈ A and j ∈ B. Such a set of edges which leaves the graph
disconnected is called a cut and the weight function allows us to quantify cuts by defining their weight
cut-value, cut(A,B) :=

∑
{i,j}∈E,i∈A,j∈B w(i, j). A natural objective is to find a cut of minimal value.

A problem with this objective function is that sizes of partitions do not matter. One alternative measure
is the normalized cut, denoted by Ncut(A,B). We introduce the so-called association value of a vertex
set A denoted by a(A, V ) :=

∑
i∈A

∑
j∈V

w(i, j) and defining the normalized cut by

Ncut(A,B) =
cut(A,B)

a(A, V )
+

cut(A,B)

a(B, V )
.

We observe that the cut value is now set into relation to the similarity of each partition to the whole
graph. Vertices which are more similar to many data points are harder to separate. As we will see, the
normalized cut is well suited as an objective function for minimizing because it keeps the relative size
and connectivity of clusters balanced.

The min-cut problem can be solved in polynomial time for k = 2. Finding k-way cuts in arbitrary
graphs for k > 2 is NP-hard proven by Dahlhaus et al. [2]. For the other cut criteria, already the problem
of finding a 2-way cut is in NP, for proof see [9]. However, we can find good approximate solutions [6, 9]
to the 2-way normalized cut by considering a relaxation of the problem. Instead of discrete assignments to
partitions consider a continuous indicator for membership. As it turns out, the eigenvectors obtained from
a suitable eigenvector problem for the Laplacian of the pairwise-similarity graph G can be interpreted for
exactly that purpose. This so-called spectral method has been used for solving the k-partition problem
directly as well as through successive computation of 2-partitions. The successive 2-way problem can be
used to solve the k-partition problem with a loose bound on the correctness of membership assignment,
see [6] for more details.

For solving the 2-partition problem, we are interested in the eigenvector y2 for the second-smallest
eigenvalue, similar to the algorithm in Kannan et al. [6], Shi and Malik [9]. In particular, we will inspect
its sign structure and use the sign of an entry y2(i) to assign vertex i to one or the other vertex set.
Similarly, for direct computation of k-partitions one can use all k eigenvectors to obtain k-dimensional
indicator vectors. Previous approaches [8, 9] relied on k-means clustering of the indicator vectors to
obtain k clusters in this space.

In our problem of finding groups of STs, the number of partitions k is not known in advance. Because
we solve this problem as a successive 2-way normalized cut, k is an outcome governed by the cut-value
and the minimum size of partitions. As a terminating criterion, the threshold on the maximum of Ncut
values will control the depth of cutting hierarchy and thus the number of leaves which are the number of
partitions. Because our parameters of interest are the Ncut values and sizes of k groups, we search for
the minimum of the Ncut(A,B) over the sorted 2nd-smallest eigenvector y. At each successive partition
if the Ncut value is larger than a threshold on the maximum Ncut and the size of the resulting terminal
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Figure 1: Observed distance and its distribution, compared to the estimation (dashed lines) from the geometric
distribution P[X = d] = (1− λ)λ(7−d) with different rate λ.

set smaller than a certain size, we do not cut further. A hierarchy of cuts results in a tree whose edges are
sets of collapsed edges in a cut and leaves are the terminal vertex sets. As we increase the threshold on
the maximum Ncut we increase the depth of the cutting tree, but we have not yet explored if there is any
biological meaning implied by the hierarchy of cuts.

3 Clustering MLST using the normalized cut

The goal of our clustering experiment is to recover known complexes and evaluate if the normalized
cut leads to biologically meaningful groups. The dataset is unanimously curated by experts who define
biological clonal complexes and other attributes. The feature set is a vector of seven alleles for the seven
genes selected by the experts and dependent on the species. To assign a set of integer numbers to these
seven alleles, biologists compare a sequence of a gene to the existing database of known alleles. A gene
receives a new allele identification if its sequence does not completely match any other existing allele.

In our experiment with different weight functions, we investigated two choices: the Hamming dis-
tance and a probability that two STs share similar d or more alleles. We use the Hamming distance to
count how many alleles are exchanged between two STs. Because epidemiologists believe that the dis-
tance 7 implies no relation, we prune all edges with distance = 7 from the graph. For the other weight,
we use the fraction of all edges that have a larger distance than the given edge; the density is shown in
Fig. 1.

3.1 Result and Discussion
We separately cluster the MLST data from each of three species: E. coli, N. meningitis and Salmonella
because the gene sets are different. The MLST data from E. coli and Salmonella are a courtesy of
our collaborator Mark Achtman and not yet publicly available. After clustering using various threshold
values, to study how well the normalized cut results in biologically meaningful groups, we compute two
quantitative measures: (1) the sensitivity and specificity and (2) the point-correlation between clusters and
ST-Complex defined by experts. We also compute the statistical significance (p-value) for both measures.
We cluster all STs and evaluate the response curve and significance on a subset with the annotation.

To test the specificity and sensitivity, we check whether cluster membership correctly predicts equal-
ity in ST-Complex. For example, for a true positive, belonging to the same cluster has to agree with being
in the same ST-Complex. We count over all pairs of sequence types for which we have the gold standard
available.

To test for correlation between clusters and ST-Complex, we apply the label permutation test, for-
mally described by the Mantel’s statistic (see e.g. Sokal and Rohlf [10]), for each biological property and
compute the simulated p-value. Given two binary matrices X and Y , where Xij is 1 when Si and Sj are
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ST-Complex Methods
eBURST Ncut < Threshold

Size > 2 All < 0.5 < 0.7 < 0.9 < 1.1
E. coli Sens. 0.31 0.31 0.99 0.99 0.77 0.37

Spec. 1.0 1.0 0.13 0.25 0.43 0.73
k 21 38 4 6 15 30

Salmo. Sens. 0.65 0.74 1.0 1.0 1.0 0.88
Spec. 1.0 1.0 0.58 0.79 1.0 1.0
k 4 18 11 16 27 30

N. mening. Sens. 0.0 0.69 – 1.0 0.94 0.86
Spec. 0.15 0.97 – 0.12 0.47 0.56
k 134 223 1 9 30 449

Table 2: Specificity and sensitivity values on classification of ST-Complex from E. coli, Salmonella and N.
meningitis. We performed clustering using all STs and computed the sensitivity and specificity on the subset with
the expert’s annotation on ST-Complex.

in the same cluster (or same class for Yij) and 0 otherwise, the Mantel’s statistic Z is defined as:

Z =
n−1
Σ
i=1

n
Σ

j=i+1
XijYij.

If clustering correlates with biological grouping, the observed Z should be high and distinct from the
random Z-values. The computation of the distribution of Z-statistic is more complex than the Fisher’s
exact p-value. We are interested in the standardized form of Z-statistic defined by

Γ =
Z −E0[Z]

γ
,

where E0[Z] is the expected value of Z for a random observation and γ is its standard deviation. Because
there is no closed form for computing E0[Z] and γ for random observations, we find them from a large
number of simulated Z-values computed from random permutations of labels of X . To obtain a reliable
p-value for Z , we need at least N 2 random permutations where N is the number of STs. We generated
104 random permutations and obtained significant results for all three species (p-value = 10−4). We also
computed the p-value at various thresholds of the Ncut values, but data not shown here due to limited
space.

Comparison with eBURST clusters. We compare Ncut and eBURST with the expert’s annotation
and summarize the sensitivity and specificity as the ROC plot in Fig. 2. For each species, we perform
clustering of all STs using eBURST and Ncut at various threshold values and evaluate the prediction
power of both algorithms on a subset of annotated STs; therefore, discovery of new ST-complexes is not
considered here. To be fair with eBURST, we consider two cases of clustering results: (1) all eBURST
clusters including pairs and singletons and (2) only eBURST clusters larger than two STs. The result
from eBURST appears to be consistent for E. coli and Salmonella regardless of cluster sizes, but for
N. mening. eBURST clearly splits more ST-Complex than the Ncut method, hence low specificity and
sensitivity when not considering pairs.

4 Conclusion
Identification of clonal complexes in bacterial species is a difficult problem due to recombination. Fur-
thermore, it is still unclear if relying only on MLST from seven loci is sufficient. The expert’s annotation
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Figure 2: Receiver Operating Characteristic (ROC) of Ncut and eBURST. We can plot ROC for Ncut at various
threshold values, but there is only one data point from eBURST.

data is also difficult to reconstruct because further knowledge involves in the annotation. Nevertheless,
using only pairwise distance, we were able to obtain results that were comparable to manually curated
data and consistent with previous methods such as eBURST. Our future work is to evaluate the mapping
between clusters and phenotypes and compare the hierarchy of the cuts to the Split Decomposition [4].
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