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1 Introduction

We try to gain deeper insights into the regulatory mechanisms of lignification. Lignin, the sec-
ond most abundant polymer in nature, is critical for plant growth, development and fitness. In
addition, according to Jung & Ni (1998) it influences paper production as it has to be removed
from wood for high-quality paper. In the review by Sandermann (2004) it becomes clear that lig-
nification pathways are interconnected with disease- and stress-responses. Getting deeper insights
into disease- and stress-responses is crucial for weed control (Basu et al., 2004) and resistance im-
provement of economical and oecological important plants (Stuiver & Custers, 2001). Therefore,
deeper understanding of the pathways leading to lignification in plants is a fundamental task.

We focus on the tree Populus trichocarpa as its genome is sequenced (DOE Joint Genome
Institute (JGI), 2005). Anyway, only few experimental data is available for P. trichocarpa. This is
due to the fact that experiments to uncover genes involved in lignification are difficult to perform in
wooden plants as they have a high generation time. Thus, it is reasonable to carry out experiments
in model organisms and to transfer the results to wooden plants. In plant biology, the main model
organism is Arabidopsis thaliana as it is small, has a rapid lifecycle and it is much known about
its physiological and biochemical processes (Goodman et al., 1995) as well as its sequence (The
Arabidopsis Genome Initiative, 2000). In addition, there are many gene homologies and pathway
similarities to P. trichocarpa especially in relation to lignification (Allona et al., 1998; Hertzberg
et al., 2001).

Raes et al. (2003) give a genome-wide characterization of genes involved in lignification. One
characteristic is an AC element in the upstream region of the genes. The AC element consists of
10bp. Due to the small size of the AC element, one expects to find many occurences by chance,
thus, further restrictions are necessary. Experimental results suggest that the AC element is located
on the + strand within 500 bp of the promoter. Therefore, we apply a statistically sound method
to find the AC element in upstream regions of P. trichocarpa. To decrease the number of false
positives, we only consider orthologous genes with a predicted AC element in P. trichocarpa and
A. thaliana. A further decrease of non-functional AC elements is done by integrating tissue-specific
microarray expression data from A. thaliana.

2 Methods

2.1 Motif Finding

We use the approach Rahmann et al. (2003) to find the AC element, which we call motif in the sub-
sequent text. The position weight matrix (PWM) is constructed based on the five experimentally
verified AC elements Raes et al. (2003), see table 1.

One has to select a fraction of false positives (type I error) or false negatives (type II error) to
define a score threshold. We choose both fractions to be equal. The threshold can be calculated
based on the score distributions of the null model (background) and motif model (signal) without
further parametric distributional constrains as the score is simply the sum of independent random
variables. Figure 1 shows both score distributions. Obviously, most scores can uniquely be assigned
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Eucalyptus I C C C A C C T A C C
Phaseolus I C C C A C C T A C C
Phaseolus II - C C A C C A A C C

Petroselinum II C T C A C C A A C C
Populus C T C A C C A A C C

Table 1: Alignment of experimentally confirmed AC elements.

to one of the models. This demonstrates the large power of the AC element matrix to detect motif
occurences. Figure 2 contains the type I error with respect to the type II error. The intersection
with the diagonal is the point where both errors are equal. Hence, we select a scoring threshold
of 0.044 such that type I and type II errors are equal.
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Figure 1: Score Densities for Background
and Signal Model.
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Figure 2: ROC curve for AC element.

2.2 Orthologs

We want to predict genes with functional AC elements. Therefore, we apply the assumption that
functionally relevant sequence regions are under selective pressure. Thus, we assume genes with
functional AC elements to have orthologs which have an AC element as well. A standard approach
to find pairs of orthologs is using BLAST (Altschul et al., 1990) reciprocal best hits. In case of
recent genome duplications, the algorithm does not work due to the fact that two highest scoring
genes occur. Hence, we have to use a more sophisticated method.

According to Sonnhammer (2002), in-paralogs are paralogs where the duplication occured after
the speciation event. Based on this notion of in-paralogs, Remm et al. (2001) present a method to
identify groups with in-paralogs and their orthologous partners in the other species, which form a
group of in-paralogs as well. First, BLAST searches are performed between and within the species.
After finding the best reciprocal hit, the corresponding pairs of genes form the main orthologs.
BLAST hits with the main ortholog within the species are called in-paralogs if the bit score is
higher than the bit score between the main orthologs. We apply this algorithm to all peptide
sequences of A. thaliana and P. trichocarpa.

2.3 Expression Data

Lignification occurs mainly in root and stem. Thus, we assume that genes involved in lignification
are highly expressed in these tissues in comparison to other tissues like flower and leaves, which
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form the baseline expression. Therefore, we filter the list of genes for differentially expressed genes
in root and stem under the condition that the expression is higher in the selected tissues.

Differentially expressed genes can be found by using the empirical Bayes approach (Smyth,
2004). An advantage of this approach is that the variance of gene expression is estimated using
partly the estimate of all genes. The regularization decreases the variance of the estimates on the
cost of introducing a low bias.

Let’s assume that there are n0 microarrays with baseline expression and n1 microarrays for
root and stem. Thus, we get the total number of microarrays by setting n = n0 + n1. We denote

with Y
(g)
i the expression of gene g in the ith microarray. In the following, we neglect the gene

index g. The baseline expression is then modeled by

Yi = α + ε (1)

for all i. Here, ε denotes the error of the model. Apparently, we assume each gene to have a
distinct base line expression α. In the root and stem microarrays, the expression is the sum of the
baseline expression and a differential expression coefficient β:

Yj = α + β + ε (2)

We combine these two models by:

Y = X(α, β)T + ε

where X ∈ {0, 1}n×2 is the design matrix where the first column contains only ones. The first
n0 elements of the second column contain zeros while the remaining elements contain ones. This
gives us a multivariate model where the expression on root and stem microarrays is modeled by
(2) and on the other microarrays by (1). With this model, we can easily retrieve differentially
expressed genes by testing the null hypothesis:

H0 : β = 0

The null hypothesis H0 is true for all genes which do not change from the baseline expression
in the root and stem tissues. Upregulated genes are the ones with a positive coefficient β. As we
test thousands of genes, we run into a multiple testing problem. Thus, we correct the p-values
according to Benjamini & Hochberg (1995) and control the false discovery rate (FDR). We control
the FDR at a level of 0.01. That is the expected proportion of false positives among the significant
genes.

The data is taken from a subset of the comprehensive AtGenExpress Atlas generated by Schmid
et al. (2005). Variance Stabilizing Normalization (Huber et al., 2002) is used for normalization.
We select 21 microarrays from flower tissues each with one replicate resulting in n0 = 21 · 2
microararys for the null model. The number of microarrays for root and stem tissues is n1 = 15 ·2.
The original atlas contains more microarrays. Still we do not take knock-outs into account as the
knock-outs are not related to root and stem tissues. In addition, the unrelated knock-outs would
increase the expression variability within the background model such that α gets less weight while
β might explain knock-out effects instead of differential expression. This would result in a higher
number of false positives.

3 Results

3.1 Prediction based on Sequences

In the 500bp upstream regions of A. thaliana, we detect 2208 hits for an AC motif. In the 1000bp
upstream regions of P. trichocarpa, the number is 6824. To exclude functionally irrelevant genes,
we only take predicted AC elements into account if they are present in the upstream regions of at
least two orthologous genes. This results in 363 A. thaliana genes and 432 P. trichocarpa genes.
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3.2 Prediction Refinement with Expression Data

Among the set of 363 A. thaliana genes, we find 207 differentially expressed genes between root
and stem microarrays and flower microarrays. Still, only 127 of these genes are upregulated.

We compare our prediction to the literature. Raes et al. (2003) provide a list of 61 genes
involved in lignification. We identify genes of those which where known to contain an AC element
(6 genes). In addition, there are 13 genes related to stress response in the prediction set. According
to Sandermann (2004), genes involved in lignification are often related to stress response since
detoxification is a results of binding to the cell wall. Furthermore, 4 Myb genes are detected which
are likely involved in lignification expression (Newman et al., 2004). Another 3 genes belong to the
cytochrome P450 family, which was already described to have a relation to lignification by Meyer
et al. (1996). The impact for lignification of 3 genes related to auxin is shown by Ljung (2002).
Another large fraction of the resulted set comprises transcription factors and more generally DNA
binding proteins. Many of the remaining predicted genes have no annotated function.

4 Discussion

In principle, we give preliminary hints that it is possible to utilize experimental data from a model
organism to get results for a related species. The advantage is that expensive experiments can be
reused. In our case, we use experimental data from A. thaliana and the sequences from A. thaliana

and P. trichocarpa. We retrieve a set of genes related to lignification. So far, we focus on the
predicted A. thaliana genes as the annotation for the P. trichocarpa genome is not yet finished.
In addition, much more is known about A. thaliana such that it is worth to give evidence for the
prediction based on this species. In the near future, we will make use of orthology relations to
predict P. trichocarpa genes for lignification based on this analysis.

The results for A. thaliana are promising as we find many genes which are very likely involved
in lignification. We have given some evidence by assigning the predicted genes to functional groups
related to lignification. As this was done manually, we are aware that further evidence is required.
Therefore we are planning to integrate the GO Annotation (The Gene Ontology Consortium,
2000) for A. thaliana (Berardini et al., 2004). With this data by hand, we are able to compute
p-values for overrepresented categories. Ideally, we would find the category ’lignin metabolism’
to be overrepresented. In addition, many of our predicted genes should be annotated with ’lignin
catabolism’. Unfortunately, this category contains nothing. Other predicted genes should also fall
into the stress response categories. In this case, analysis will be difficult as there does not exist
one main category for this function but many nodes which are located in many different branches.
Further on, the correctness of prediction has to be approved by biological experiments.
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