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1 Abstract

In this work we first discuss approaches for detecting pairs of transcription factor binding sites
(TFBSs) which tend to co-occur in regulatory regions of vertebrate promoters and thus are poten-
tially synergistic. We search for putative TFBSs in a set of human sequences from the Eukaryotic
Promoter Database using TRANSFAC matrices. TFBSs are then grouped to avoid the detection
of putative synergistic pairs solely because of similarity of corresponding position weight matrices.
One approach for counting pairs of TFBSs in a given window and the subsequent calculation of a
pair-score for the relative overrepresentation of a given pair of two TFBSs is presented, alternative
ways are outlined. Some high scoring pairs of known interacting transcription factors are are found
with the described method. Necessary extensions are discussed.

2 Introduction

Transcriptional regulation is controlled by protein complexes of transcription factors binding to
specific DNA sequences around and upstream of the transcription start site (TSS). Because of this
binding sites for transcription factors (TFBSs) contained in these protein complexes often occur in
proximity to each other. The TFBSs can be found organized in cis-regulatory modules or clusters.
For metazoans a cis-regulatory module typically consists of up to ten binding sites for at least three
different sequence-specific transcription factors stretched over roughly 500bp [5]. These modules
can function to direct complex spatial or temporal expression patterns.

Figure 1: Gene control region of a typical eukaryotic gene (picture taken from [1]).
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The goal of this project is to predict putative synergistic or antagonistic transcription factors
based on an analysis of the co-occurrence of their binding sites in known regulatory regions.

3 Methods

3.1 Scanning for and merging of TFBSs

TRANSFAC is a database containing descriptions of cis-regulatory DNA elements. These are
derived from known transcription factor binding sites and are represented by gap-less profiles or
position weight matrices (PWMs) [7].
TRANSCompel is a database containing a set of of known interacting transcription factors [3],
which is used to validate putative synergistic pairs of transcription factors.
Using the methods of Rahmann et al. [8] we scan the set of sequences to be searched for overrep-
resented co-occurring pairs of TFBSs for the set of all vertebrate matrices present in TRANSFAC.

In some cases PWMs belonging to different factors are very similar and TFBSs for such factors
are predicted at the same position. As a consequence predictions of pairs of such co-occurring
TFBSs are overrepresented. To reduce the influence of PWM similarity, TFBSs are merged into
and counted as one if they belong to the same factor or PWM class. We consider three different
sets F1, F2 and F3 of PWM families:

F1 based on the binding factor classes as defined in TRANSFAC, [10] resulting in 220 groups
of matrices.

F2 based on the method described by Schones et al. [12], grouping PWMs into families based
on the similarity of matrices, resulting in 145 matrix families.

F3 based on a grouping into PWM families based on a distance measure and subsequent clus-
tering [10], resulting in 45 different matrix families.

In the sequel we assign labels to predicted TFBSs that refer to either a single PWM hit or merged
hits of PWMs belonging to the same family.

3.2 Counting and calculation of a co-occurrence score

Adapted from the procedure described by Rateitschak et al. [9] we count the combinations of
TFBSs within a given sequence window, sliding over each sequence in the dataset. To further
reduce the influence of matrix similarity we also take into account the possibility of a minimum
distance of two TFBSs (from the center of one hit to the center of the other) to be counted as a
pair. Strand orientation and pair order relative to TSS are disregarded.
While in [9] only one occurrence of a pair of TFBSs per sequence is considered, in this study we
count more than one occurrence per sequence.
Using a sliding window can lead to counting a pair of TFBSs which has already been counted
in a previous window a second time. To reduce the number of times this happens, we shift the
window of interest on the sequence by different step sizes such that the overlapping parts of two
neighboring windows are small relative to the window size.
After counting the pairs, we calculate a score Sij for each pair (i,j) of TFBSs.

Sij := log
mij

πiπj
(1)

with
mij =

fij∑
k,l fkl

and

πi =
∑

k fki∑
k,l fkl
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where fij is the number of counted pairs of TFBSi and TFBSj , πi/πj the number of pairs of
TFBSi/TFBSj with arbitrary partners and

∑
k,l fkl the total number of pairs.

A positive score Sij stands for an overrepresentation of a pair (i,j) of TFBSs, while a negative
score signifies a smaller than expected number of occurrences of a pair (i,j) in the dataset.

3.3 Dataset

We extract 1796 non-redundant human promoter sequences from the Eukaryotic Promoter Database
(EPD, rel. 81, [11]), a representative set of sequences not sharing more than 50% sequence identity
with each other. Used sequences range from position -500 to +100 relative to the experimentally
verified transcription start site.

4 Results

4.1 Calculation of co-occurrence scores Sij

We calculate co-occurrence scores for the three described methods of merging the TFBS hits. We
recalculate the scores for three minimum distances between the centers (0bp, 10bp, and 25bp)
of two TFBS hits and three window sizes (50bp, 100bp, 200bp) to assess the influence of the
parameters. We extract high scoring pairs for the different calculations.
In figures 2 and 3 we show the results for the TFBS annotations based on the set F3 of PWM
families, a window size of 100bp, and minimum distances between the centers of TFBS hits of 0bp,
10bp, and 25bp. In the colormap yellow areas represent high scores, while blue areas represent
low scores. The diagonal shows the scores for homotypic pairs of TFBSs. The lowest and the
rightmost lines of the map show the scores for TFBSs occurring in a window without any partner.
The matrix is symmetrical, because at the moment the implementation of the score calculation
does not distinguish between different orientations of a pair of TFBSs (e.g. a pair A-B is counted
the same as a pair B-A). Figure 3 shows a histogram of the scores for the described dataset.
Table 1 shows the transcription factor pairs which have a score Sij > 1.5 calculated with formula
1 using different minimum distances and a window size of 100bp.

Figure 2: Score matrix with scores Sij for
EPD promoter set, scanned for TFBSs with
PWM family set F3, window size 100bp,
minimum distance between center of hits
10bp.

Figure 3: Histogram of scores Sij calcu-
lated for EPD promoter set, scanned for TF-
BSs with PWM family set F3, window size
100bp, minimum distance between center of
hits 10bp.

In table 1 the influence of the minimum distance parameter can be seen. For the high scoring
pairs the scores normally grow when a minimum distance is applied. In these cases this behaviour
is expected, because of the influence of the total number of pairs and the number of pairs in mij ,
πi, and πj and the number of pairs with arbitrary partners in πi and πj . The total number of
pairs is reduced to roughly 25% when comparing the results for a minimum distance of 0bp to a
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pair Sij(min. dist. 0) Sij (min. dist. 10) Sij (min. dist. 25)

None 16 ATF1 Q6 1.7377 1.0991 0.7664
17 ABF1 03 54 O2 Q2 1.5737 1.6848 2.0350
17 ABF1 03 56 HBP1B Q6 1.8066 1.9756 2.2992
84 MEF2 82 AGL3 02 1.6367 1.7337 1.9734
9 E2F 02 12 E2F1DP1RB 01 1.2930 1.4187 1.6935
16 ATF1 Q6 17 ABF1 03 1.3576 1.4994 1.8256
34 FOXO3 01 48 ROX1 Q6 1.3348 1.4172 1.6294
48 ROX1 Q6 64 SOX9 B1 1.3070 1.4060 1.6421

Table 1: High scoring pairs of TFBSs for EPD promoter set, scanned for TFBSs with PWM family
set F3, window size 100bp, and minimum distances 0, 10, and 25 bp.

minimum distance of 25bp, since at a window size of 100bp this means a reduction of sequence
area searched for TFBSs of 50%. An exception is the pair “None - 16 ATF1 Q6”, which can be
explained by the relatively higher number of TFBSs occurring on their own in a window when
imposing minimum distance constraints.
Comparing the list of highest scoring pairs to TRANSCompel one can find examples like E2F/E2F
(co-occurrence score Sij = 1.4187 at parameters: minimum distance 0, window size 100, 99.50% of
scores in dataset smaller). Most known interacting pairs can be found at small to medium positive
co-occurrence scores though (e.g. CEBP/Stat: Sij = 0.08, 70.88% of scores in dataset smaller).
Some of the factors from the TRANSCOMPEL list cannot be connected to PWM families with
certainty. One reason is due to ambiguous relations between factors and their position weight
matrix clusters. Another reason is that even in a case of a unique relationship between a factor
and a PWM, the PWM might be grouped with PWMs from other factors due to matrix similarity.

5 Discussion and further work

In this work we present a method of calculating a co-occurrence score for putative synergistic
pairs of transcription factors. A few known interacting pairs of TFBSs are found at high scores,
more at medium to low positive scores. Several parameters have an impact on the actual scores,
which still has to be evaluated. A more thorough assessment of the results is needed. This can be
done with a well defined set of interacting pairs of TFs taken from TRANSCompel, TRANSFAC
and other sources, since many more interactions are known than are included in these databases.
Another possibility of testing the approach is to take a set of well known regulatory regions of
genes expressed in a certain tissue (for example liver, [4]) and check if the expected pairs of TFs
are assigned high scores.
The choice of PWM grouping is important. Having many PWMs in one family avoids counting
pairs just based on similarity of the corresponding PWMs. The drawback is the ambiguity of the
assignment of a PWM family to a TF, which makes it more difficult to validate the predicted
synergistic pairs.
The influence of the other parameters, such as minimum distance of two TFBSs and window size
for the counting procedure have to be thoroughly assessed, which is ongoing work. The prelimi-
nary impression is that most pairs of TFBS with high scores show up at high scores independent
of the window size and the minimum distance criterium, although the rank of a pair might change.
To overcome the problem of counting the same pair twice the method has been enhanced. Now a
pair of TFBSs is not counted, if excactly the same pair of TFBSs has been counted previously and
if a pair of TFBSs belonging to the same transcription factors is present within the given window.
Using this method we increment the pair count for two TFBSs if a combination is present within
a window once or more and if this combination has not been counted within the same window.
Also a new method of calculating the expected number of pairs has been implemented. Similar to
the approach used by Levy et al. [6] the labels of the TFBSs found on a sequence are permuted
and the pairs of TFBSs are counted. This procedure is repeated several times and the average

4



number of pairs for every combination is calculated. Now a log-odds score of the counted number
of pairs and the average number of pairs derived by the permutations can be calculated.
Regarding the sets of sequences that are to be analyzed, the next step is to look only at conserved
non coding regions of the EPD dataset [2].
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