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Abstract. RNA is generally a single-stranded molecule where the bases
form hydrogen bonds within the same molecule leading to structure for-
mation. In comparing different homologous RNA molecules it is usually
not sufficient to consider only the primary sequence, but it is important
to consider both the sequence and the structure of the molecules. Tradi-
tional alignment algorithms can only account for the sequence of bases,
but not for the base pairings. Considering the structure leads to signif-
icant computational problems because of the dependencies introduced
by the base pairings. In this paper we address the problem of optimally
aligning given RNA sequences either with or without known structure.
We phrase the problem as an integer linear program and then show how
to solve it using Lagrangian relaxation.

1 Introduction

Similarity searches based on primary sequence or the detection of structural
features using multiple alignments are usually the first steps in the analysis
of biomolecules. Unfortunately, many functional classes of RNA show little se-
quence conservation, but rather a conserved secondary structure which is formed
by folding onto itself and forming hydrogen bonds between its bases. Among such
RNAs are tRNA, rRNA, and SRP RNA [5].

Hence, algorithms to compute (multiple) alignments ought to take not only
the sequence, but also the secondary structure into account. In the study of [7]
the authors back up this consideration by showing that sequence based align-
ments are significantly worse than sequence-structure based alignments if their
pairwise sequence identity sinks below ≈ 60%. Thus, the problem of producing
RNA alignments that find a common structure has become the bottleneck in the
the computational study of functional RNAs.

In this paper we deal with the computation of a multiple RNA sequence-
structure alignment, given a number of RNA sequences together with their sec-
ondary structure.

2 Approach

We first describe the graph-theoretical model we use which is based on the
description in [2] and [6]. Then, we present an integer linear programming for-



mulation for this model and devise a solution approach based on Lagrangian
relaxation.

2.1 Graph-Theoretical Model for Structural RNA Alignment

Let S be a sequence s1, . . . , sn of length n over the alphabet Σ = {A, C, G, U,−}.
A paired base (i, j) is called an interaction, if si 6= − and sj 6= − and if (i, j)
forms a Watson-Crick-pair. The set P of interactions is called the annotation of
sequence S. Two interactions are said to be in conflict, if they share one base. A
pair (S, P ) is called an annotated sequence. Note that a structure where no pair
of interactions is in conflict with each other forms a valid secondary structure of
an RNA sequence.

We are given a set of k annotated sequences {(S1, P1), . . . , (Sk, Pk)} and
model the input as a mixed graph G = (V, L ∪ I ∪ A). The set V denotes the
vertices of the graph, in this case the bases of the sequences, and we write vi

j

for the jth base of the ith sequence. The set L contains undirected alignment

edges between vertices of two different input sequences (for sake of better dis-
tinction called lines) whereas the set I codes the annotation of the sequence by
means of interaction edges between vertices of the same sequence. In addition
to the undirected edges the graph has directed arcs A representing consecutivity

of characters within the same string that run from each vertex to its “right”
neighbor, i.e., A = {(vi

j , v
i
j+1) : 1 ≤ i ≤ k, 1 ≤ j < |Si|}. A path in a mixed

graph is an alternating sequence v1, e1, v2, e2, . . . of vertices vi and lines or edges
ei ∈ L∪A. It is a mixed path if it contains at least one arc in A and one line in L.
A mixed path is called a mixed cycle if the start and end vertex are the same. A
mixed cycle represents an ordering conflict of the letters in the sequences. In the
two-sequence case a mixed cycle represents lines crossing each other. A subset
L ⊂ L corresponds to an alignment of the input sequences S1, . . . Sk if L ∪ A

does not contain a mixed cycle. In this case, we use the term alignment also for
L.

Two interaction edges (i1, i2) ∈ Pi and (j1, j2) ∈ Pj are said to be realized

by an alignment L if and only if L contains the alignment edges l = (i1, j1) and
m = (i2, j2). The pair (l, m) is called an interaction match. Note that (l, m) is
an ordered tuple, that is, (l, m) is distinct from (m, l). Figure 1 illustrates the
above definitions by means of an example.

Each line l and each interaction match (i, j) is assigned a positive weight wl

and wij , respectively, representing the benefit of realizing this edge or the match.

Approaches for traditional sequence alignment aim at maximizing the score
of edges in an alignment L. A structural alignment, however, must take the
structural information encoded within the interaction edges into account as well.
A structural alignment of the annotated sequences {(S1, P1), . . . , (Sk, Pk)} calls
for an alignment such that the weight of the lines plus the weight of the realized
interaction matches is maximal.
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Fig. 1. Graph-theoretic concept of alignment. The right side shows a structural align-
ment of three annotated sequences, the left side the corresponding graph G. Thicker
lines represent alignment edges in L, adding the grey line (v1

1 , v3

2) creates a mixed cycle.
Lines L realize three interaction matches, namely ((v1

2 , v2

1), (v1

6 , v2

5)), ((v1

2 , v3

1), (v1

2 , v2

1))
and ((v2

1 , v3

1), (v
2

5 , v3

6)).

2.2 Integer Linear Programming Formulation

Modeling our problem as described above lets us very conveniently write it as
the following integer linear program (ILP):

max
∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

wlmylm (1)

s. t.
∑

l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C (2)

ylm = yml ∀ l, m ∈ L, l < m (3)
∑

m∈A

ylm ≤ xl ∀ l ∈ L (4)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer (5)

The variable xl equals one, if line l is part of the alignment, whereas ylm = 1
holds, if lines l and m realize the interaction match (l, m). One can easily verify
that all properties for a multiple structural alignment are satisfied: (3) and (4)
guarantee that interaction matches are realized by lines and that every vertex is
incident to at most one interaction edge, whereas (2) ensures that the selection of
lines forms a multiple alignment. The order l < m within the equality constraints
(3) denotes an arbitrary order defined on the elements of A (to avoid the same
constraints to appear twice in the ILP).

This ILP formulation is similar to the one given in [6] where the authors
present a branch-and-cut approach for case of structurally aligning two RNA
sequences. Previous work on contact map alignment in the area of proteomics
by [3] and for the two-sequence case of our problem by [2] indicates, however,
that Lagrangian relaxation is better suited to obtain good solutions to this ILP
than a direct branch-and-cut approach in terms of running time.



2.3 Lagrangian Relaxation Approach

Following the Lagrangian optimization method, we drop the constraints that
complicate the original problem – in this case the equality constraints (3) –
and incorporate them into the objective function with a penalty term for their
violation.

Lemma 1. The relaxed problem is equivalent to the general multiple sequence

alignment problem.

Proof. We distinguish two cases, depending on whether a line l is part of an
alignment or not. First, assume xl = 0. In this case, due to (4), all ylm must be
zero as well, and the contribution of line l to the objective function is zero. If,
however, a line is part of an alignment, its maximal contribution to the score is
given by solving

pl := max wl +
∑

m∈L

wlmylm (6)

s. t.
∑

m∈L

ylm ≤ 1 (7)

∑

m∈L

ylm ≤ 0 ∀m ∈ C : l ∈ C (8)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer (9)

where C is a mixed cycle in G. Inequality (7) states that only one interaction
match can be chosen. According to the objective function (6) it is clear that this
will be the one with the largest weight wlm. Inequality (8) constrains this choice
by excluding interaction matches with lines m that are in conflict to l. This ILP
is easily solvable by just selecting the most profitable interaction match (l, m̂)
such that l and m̂ do not cross each other, which can be done in constant time.
Thus, the profit pl a line l can realize is given by its own weight wl plus the
weight wlm̂ of such an interaction match.

In the second step, we compute the optimal overall profit by solving the
multiple sequence alignment problem

max
∑

l∈L

plxl

s. t.
∑

l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C

0 ≤ x ≤ 1 integer

Let x∗ be the solution of this problem. We claim that an optimal solution of
the relaxed problem is given by (x∗, y∗) with y∗

lm = x∗

mylm̂. (proof omitted)

ut



Having demonstrated how to formulate the relaxed problem as a pure sequence-
based multiple alignment problem we now describe the Lagrangian method. For-
mally, we introduce appropriate Lagrangian multipliers λi with λi

ml = −λi
lm for

l < m and with λi
ll = 0 and define the Lagrangian problem as

max
∑

l∈L

wlxl +
∑

l∈L

∑

m∈L

(λi
lm + wlm)ylm

s. t.
∑

l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C

∑

m∈L

ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

Note that, according to Lemma 1, we can solve instances of the Lagrangian
problem by solving a multiple sequence alignment problem where the profits of
the interaction matches are coded in the weights of the lines.

In the end, the task is to find Lagrangian multipliers that provide the best
bound to the original problem. We do this by employing iterative subgradient
optimization as proposed by Held and Karp in 1971. A detailed description is
beyond the scope of this paper, for details the reader referred to [4].
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