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Abstract

Genomic transcriptional processes rely heavily on the combinatorial binding of transcrip-
tion factors on the upstream regions of genes. Analysis and complete characterization of such
’regulatory’ regions can unlock the door to the understanding of regulatory and transcriptional
mechanisms. Such analysis is usually based on the prediction of transcription factor binding
site (TFBS) hits on non-coding regions. To improve the prediction of TFBS hits, phylogenetic-
footprinting is generally employed. Here we propose a method that combines sequence com-
parison and scanning with TFBS hits to generate simultaneously annotated alignments. The
hope is that simultaneous alignment and annotation can result in an improved specificity.

1 Introduction

Positional-specific scoring matrices (PSSMs) and phylogenetic footprinting combined together have
been the backbone of recent research on identifying cis-regulatory elements in non-coding regions
around genes. Most approaches based on these methods carry out two individual steps sequentially.
Extract the conserved regions by generating alignments between the two sequences and scan these
extracted regions either individually or together for TFBS hits. The order of the two steps could
also be reversed.
In this paper, we present an approach that carries out the alignment while simultaneously annotat-
ing with TFBS hits. The PSSMs of interest are incorporated explicitly into the alignment model,
hence extending the usual description of alignments and alignment scoring schemes. Equipped
with such an extended alignment model, we can generate not only the locally optimal (as is usu-
ally done) but also the suboptimal alignments, all with TFBS hit annotations.

1.1 Basic Idea

As input, the method takes in a pair of non-coding sequences that surround orthologous genes
in two species at a reasonable evolutionary distance. At the core is a set of profiles denoted by
P1, . . . , Pq, representing motifs one wishes to detect. The final outcome is a set of non-intersecting,
locally optimal alignments of the concerned sequences, with additional annotations of profile in-
stances on the generated alignments. In order to generate this additional annotation, we need to
extend the usual definition of gapped local alignments.
For a standard gapped alignment, it suffices to keep track of the aligned positions (substitutions)
and the insertions and deletions (indels). Calculation of the score of the alignment, then, requires
summing up the substitution scores as evaluated from entries of a substitution matrix s and
then subtracting a gap-penalty g for every indel. For two given sequences, an optimal local
alignment can then be determined by using the Smith-Waterman [2] algorithm, based on dynamic
programming. For non-overlapping suboptimal alignments a simple implementation could be based
on the Waterman-Eggert algorithm[3].
To include profiles for our method, we extend the usual scoring scheme as follows. Let lk be
the length of a profile Pk. Now, any stretch of lk consecutive non-gapped substitutions in the
alignment can be scored in (at least) two ways: either as in the standard gapped alignment by
scoring each of the lk letter pairs using the scoring matrix s entries, or as a profile instance using a
profile-scoring array PSAk. The PSAk reflects how well the lk letter pairs fit to the motif described
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by Pk. Thus, PSAk is a function which assigns a real-valued score to every pair of non-gapped
sequences of length lk.
With the usual scoring scheme thus extended, we are then capable of determining the different
kinds of optimal local alignments for two give sequences x and y and a set of profile-scoring arrays
PSA1, . . . , PSAq by slight modifications of the standard algorithms (discussed later).

2 Notations and Definitions

We introduce some notations for standard alignments and then proceed to explain how the pro-
posed alignment model can be viewed as an extension of the standard model.

2.1 Standard alignments

Let Σ be a finite alphabet and |Σ| its cardinality. Although we are primarily concerned with DNA
sequences (|Σ| = 4), we stick to a more general exposition here.
Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), xi, yj ∈ Σ be two sequences of lengths m and n,
respectively. Let s : Σ×Σ → R be the substitution scoring matrix. Let g > 0 be the gap penalty.
A gapped alignment A between x and y introduces gaps into the two sequences such that the
lengths of the resulting two sequences are identical, and places these gapped sequences one upon
the other so that no gap is ever above another gap. Columns with letters in both sequences are
substitutions (and denoted by S), and are scored using entries from s, whereas every column which
contains a gap in either x or y is an insertion (I) or deletion (D), respectively, and a gap-penalty
g is subtracted for it. Hence, an alignment A can be coded as a string of letters {S, D, I} which
represents the sequence of its columns. As an example, the two sequences x = ACGTATAACG
and y = ACCATATATC could be aligned as following,

x∗: A C − G T A T A A C G
y∗: A C C A T A T A T C −
α: S S I S S S S S S S D

We denote by nS(A), nD(A) and nI(A), the respective numbers of these three letters in that string.
Therefore, A = (α1, α2, . . . , αh(A)) ∈ {S, D, I}h(A) is a valid alignment, of length h(A), between x

and y, iff nS(A)+nD(A) = m and nS(A)+nI(A) = n. An alignment with the above characteristics
directly defines a mapping

A : Σm × Σn → (Σ∗)h(A) × (Σ∗)h(A)

(x, y) 7→ (x∗, y∗),

where Σ∗ := Σ∪{−} and h(A) = nS(A)+nD(A)+nI(A). The score S(A, x∗, y∗) for the complete
alignment is calculated by summing over the indvidual column scores and the alignment with the
highest score amongst all possible alignments is the optimal (global) alignment between x and y.
For every column i, the scoring scheme defines a score Sc(αi, x

∗

i , y
∗

i ) via

Sc(αi, x
∗

i , y
∗

i ) =

{

s(x∗

i , y
∗

i ), if αi = S

−g, if αi = D, I

The score for the complete alignment is simply calculated as the sum of the column scores,

S(A, x∗, y∗) =
∑h(A)

i=1 Sc(αi, x
∗

i , y
∗

i ).

2.2 Extended alignments

The proposed notion of extended alignments can be conveniently introduced on the string coding
representation of alignments discussed above. Recall that our aim is to directly assign some parts
of the alignment to one of the q profiles P1, . . . , Pq with lengths l1, . . . , lq , respectively. Therefore,
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we now code an alignment A by a string of letters from the set {S, D, I, P1, . . . , Pq}. In this coding,
a column of A coded by Pk means that the corresponding lk letters from x and y are gaplessly
aligned and assigned to profile Pk. Therefore, in the previous example with the two sequences x

and y, a possible alignment could be,

x∗: A C − G TATAA C G
y∗: A C C A TATAT C −
α: S S I S P1 S D

In continuation of our former notation, we denote the number of occurences of letter Pk in A to be
nPk

(A). Therefore, A can be a valid alignment for x and y if nS(A) + nD(A) + lenk(A) = m and
nS(A) + nI(A) + lenk(A) = n, where lenk(A) =

∑q

k=1 lk × nPk
(A), and h(A) = nS(A) + nI(A) +

nD(A) +
∑q

k=1 nPk
(A).

For the mapping (x, y) 7→ (x∗, y∗), we have in the extended setting

x∗

i , y
∗

i ∈

{

Σ∗ if αi ∈ {S, D, I}

Σlk if αi = Pk, 1 ≤ k ≤ q.

Coming to the scoring, the column score Sc is now extended as

Sc(αi, x
∗

i , y
∗

i ) =











s(x∗

i , y
∗

i ), if αi = S

−g, if αi = D, I

PSAk(x∗

i , y
∗

i ) − pk, if αi = Pk, 1 ≤ k ≤ q

where PSAk is the profile scoring array associated with profile Pk and pk is an additional calibration
parameter (discussed later). The definition given in the previous section for the score of the
complete alignment pertains.

3 Algorithm

Since we are interested in regions with high local similarities, we use the Smith-Waterman al-
gorithm for generating the optimal local alignments, as our foundation step and extend it for
incorporating profiles.

Smith-Waterman Algorithm Let M be the (m + 1) × (n + 1) dynamic programming matrix
which is filled up with the following recursion rule:

M(i, j) = max{0, M(i− 1, j − 1) + s(xi, yj), M(i − 1, j) − g, M(i, j − 1) − g} (1)

That is, M(i, j) is the maximum of 0 or the best score of an alignment ending at xi and yj .
Depending on whether it is derived from (i − 1, j − 1), (i − 1, j) or (i, j − 1), M(i, j) is called a
substitution (S), deletion (D) or an insertion (I), respectively. Thus, in the usual scenario, the score
of a grid point is calculated using the scores of three predecessor points.(Fig. 1). The alignment
is then found by tracing back from the point (i, j) with the maximum score M(i, j) = Mmax, where
Mmax = maxk,l M(k, l), ∀ 0 ≤ k ≤ m, 0 ≤ l ≤ n.

Proposed Algorithm The recursion step described above, is modified to incorporate profiles
as follows. Besides the three predecessors considered before, we now also compare the score at
a point lk diagonal positions above the point (i, j), that is, the score of the point (i′, j′), where
i′ = i− lk + 1, j′ = j − lk + 1.(Fig. 2). For each profile, we introduce a new m× n matrix, pmatk,
defined as

pmatk(xi, yj) =

{

−∞ ∀ i, j ≤ lk
∑lk

t=1 PSAk(xi−lk+t, yj−lk+t, t) − pk otherwise
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Figure 1: Recursion step in the Smith-
Waterman algorithm.

Figure 2: Modified recursion step in the pro-
posed algorithm where lk = 5.

Here, 1 ≤ t ≤ lk is simply a variable introduced for simplicity of presentation. Hence, each
pmatk entry is derived from PSAk by summing over previous lk values. The pair-profile hits are
accomodated by considering the profile scores at each point in the recursion step,

M(i, j) = max































0,

M(i − 1, j − 1) + s(xi, yj),
M(i − 1, j) − g,

M(i, j − 1) − g,

M(i − (lk − 1), j − (lk − 1)) + pmatk(xi−1, yj−1)
∀ 1 ≤ k ≤ q

Hence, M(i, j) is the maximum of 0 or the best score of an alignment with pair-profile hits ending
at xi and yj .As before, we traceback from the point with the maximum score, M(i, j) = Mmax =
maxk,l M(k, l), for all 0 ≤ k ≤ m, 0 ≤ l ≤ n.

4 Suboptimal Alignments

We discuss a straightforward approach for generating suboptimal alignments with pair-profile hits
based on the Waterman-Eggert algorithm [3]. During the first traceback, any point (i, j) in the
alignment that has been arrived at from a substitution or a pair-profile hit is marked as “used”,
accordingly. Any point that is not an indel or lies inside a pair-profile jump is not marked.
The procedure is then on the same lines as the Waterman-Eggert[3] algorithm. During re-
calculation, the same algorithm is carried out again, but with one difference. At every step
in the alignment, the substitution or pair-profile instance with which the alignment ended previ-
ously is not allowed again. That is, for any point which was marked “used” as a substitution, the
recursion step now changes to disallow the substitution again, meaning, it does not consider the
immediate diagonally above point. For a point which was marked “used” as a pair-profile end,
the recursion step disallows the same profile hit to occur here again. So, if M∗ is the re-computed
matrix, to calculate M∗(i, j), we consider the column (k, j), where i < k. Then each entry (k, j),
k = i + 1, i + 2, . . . is re-computed until the new value M∗(k, j) = M(k, j) using the modified re-
cursion rules. A similar calculation for the row (i, k), j = k + 1, k + 2, . . . is carried out until
M∗(k, j) = M(k, j). Traceback starts as usual from the maximum-score element.
We now explain in detail how one could make a balanced choice of the scoring elements of the
extended scheme.

5 Scoring issues

As mentioned before, the standard alignment scoring scheme has two main constituents: the
scoring matrix s and the linear gap-penalty g. The entries of the scoring matrix s can usually

4



be interpreted as log-likelihood ratios with respect to some background letter distribution π. Let
q = (q(u, v))u,v∈Σ be a matrix giving the probability of observing letter pair (u, v) at an aligned
position. Hence,

s(u, v) = cs log

(

q(u, v)

π(u)π(v)

)

The constant cs is a scaling constant introduced for computational convenience. The two new
parameters introduced in the extended model are the profile-scoring array, PSAk and the profile-

penalty, pk. Both together need to maintain a balance between two things: the individual profiles
against the standard alignment scores and the scores of the profiles amongst themselves, so that
none get unduly over- or under-represented in the optimal alignment. We assume in the following
that a background letter distribution π and a scaled scoring matrix s, which properly reflects the
evolutionary distance between the two sequences, have been given. Also, each profile is assumed
to be given via its position specific letter distributions, or formally Pk = (P1

k, . . . , Plk
k ), where each

Pi
k is a probability distribution on Σ.

Profile-scoring array Let u,v ∈ Σlk . PSAk will be constructed as a scaled and rounded log-
odds score of generating u and v from two independent samples from Pk as opposed to sampling
all their letters from independent calls to π. That is,

Pk(u)Pk(v)
∏lk

i=1 π(ui)π(vi)
=

lk
∏

i=1

Pi
k(ui)

π(ui)

Pi
k(vi)

π(vi)

which after taking logarithms, re-ordering and scaling leads to,

PSAk(u,v) :=

lk
∑

i=1

cs log

(

Pi
k(ui)P

i
k(vi)

π(ui)π(vi)

)

=

lk
∑

i=1

cs log

(

Pi
k(ui)

π(ui)

)

+

lk
∑

i=1

cs log

(

Pi
k(vi)

π(vi)

)

=: PSSMk(u) + PSSMk(v). (2)

where, cs is a scaling constant, introduced for convenience. Here, PSSMk is the usual (scaled)
position specific scoring matrix as it would be constructed from Pk for a single sequence and a
given background letter distribution.
The special form (2) which states that the profile score of the string pair (u,v) can be written
as the sum of the individual PSSM scores of the two strings, comes from the fact that we have
assumed the generation of u and v to be independent in the underlying probabilistic model. It is
also possible, in our approach, to explicitly model the evolutionary conservation in the string pair
(u,v) but this will, of course, destroy the special additive form in (2). Such a modeling should
respect the evolutionary distance between the two species under consideration, which also has
(implicitly) been used in the construction of the scoring matrix s. The following discussions on
the balancing of different scoring parameters are not affected by such a more general construction
of profile scoring arrays.

Profile penalty Let u,v be two substrings of length lk of the given sequences x and y, re-
spectively. Recall (Section 2) that for every alignment which gaplessly aligns u, v by successively
visiting lk substitution (S) states, there exists a variant which uses a Pk state for u and v, instead.
In a direct comparison of the two alignments, the latter achieves a higher score than the former,
whenever PSAk(u,v) − pk >

∑lk
i=1 s(ui, vi). which, after rewriting, is equivalent to

LLRP2

k
,ql

k
(u,v) := log

Pk(u)Pk(v)
∏lk

i=1 q(ui, vi)
>

pk

cs
=: p′k. (3)
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Therefore, we can see that the decision about which of the two variants of the alignment achieves a
higher score is nothing but a log-likelihood ratio test. Two models for the generation of (u,v) are
compared. One model (the null-hypothesis) samples the letter pairs in (u,v) independently from
the evolutionary letter pair distribution q, whereas the other model (the alternative) generates u

and v independently from the model defined by Pk.
The choice of p′k can therefore be based on the same kind of considerations which can be used in
every log-likelihood ratio based test. For example, for a given level α one could determine p′

k(α)
such that Pql

k
(LLRP2

k
,ql

k
(u,v) > p′k(α)) < α. In the testing language this would mean that a

test, which rejects the null-hypothesis in favour of the alternative, whenever the test statistics
LLRP2

k
,ql

k
(u,v) exceeds the value p′k(α) has a type-I-error below α.

A further measure which could be considered when specifying a threshold p′

k is the power of the
test, or β(p′k) := PP2

k

(LLRP2

k
,ql

k
(u,v) > p′k). A more detailed discussion about how to use these

two types of errors when specifying a profile penalty p′

k can be found in [1].

6 Conclusion and Outlook

We have presented a method that simultaneously aligns and annotates cis-regulatory regions. We
have shown how the traditional dynamic-programming method can be extended straightforwardly
to incorporate profiles for the proposed model. The scoring parameter selection has also been
discussed. The algorithms discussed have been implemented and are currently under evaluation.

References

[1] S. Rahmann, T. Müller, and M. Vingron. On the power of profiles for transcription factor
binding site detection. Statistical Applications in Genetics and Molecular Biology, 2(1):Article
7, 2003.

[2] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal

of Molecular Biology., 147:195–197, 1981.

[3] M. S. Waterman and M. Eggert. A new algorithm for best subsequence alignments with
application to tRNA-rRNA comparisons. Journal of Molecular Biology, 197:723–728, 1987.

6


