
An Introduction to SolaS

Hugues Richard and Marcel Schulz

July 22, 2009

This document gives a short introduction to the RSolaS package pro-
vides key functionality for detecting and quantifying alternative splicing
events in an RNA-Seq experiment. Solas is designed to infer and quan-
tify alternative splicing based on the read densities observed within coding
regions. The analysis is performed througth 3 routines:

� DASI (Differential Alternative Splicing Index) for detecting alternative
splicing events differentiating two conditions

� CASI (Cell Alternative Splicing Index) for detecting genes and exons
which are part of an alternative splicing event.

� POEM (Proportion Estimation) to quantify the relative proportion of
different isoforms.

Application of each of the strategies will be illustrated on a canonical
gene in the next section. The remaining section will deal with certain points
of detail.

> library(Solas)

1 Alternative splicing analysis

The analysis proposed in Solas are always performed one gene at a time. In
order to apply the methods to a gene, we need to specify two information:

� The description of the gene model (exon coordinates and transcript
structures), encoded as a GeneStructure object.

� The read counts observed within the exons, given as a Genecount ob-
ject.

1

We assume that the reads from the RNA-Seq experiment have already
been aligned to the genome of interest1, and the mapping position where
intersected with genomic coordinates.

Let’s work with an example gene MyGene consisting of 5 exons and 4
transcript isoforms. All exons are supposed to have the same length (150 bp)
The gene structure is illustrated in the following figure:

Figure 1: Example of a gene with 5 exons and 4 forms. The encoding of the
different isoform structure is done throught the matrix I, which denotes at
coordinate (i, j) if the ith form is using the the jth exon.

An isoform 1 (with transcript ID “Form1”) skips exons num. 2, and
so on... This gene model is initialized as a GeneStructure object with the
following set of commands:

> transcript.names = c("Form1", "Form2", "Form3", "Form4")

> gene.info = data.frame(name = "MyGene", chr = "chr0",

+ nexons = 5, direction = "+", nforms = 4)

> I = matrix(c(1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,

+ 1, 0, 1, 0, 0, 1, 1, 1), ncol = 5, byrow = TRUE)

> colnames(I) = paste("E", 1:5, sep = "")

> trans.structure = data.frame(gene = "MyGene", form = transcript.names,

+ I)

> exons.coord = data.frame(gene = "MyGene", chr = "chr0",

+ subexon = paste("E", 1:5, sep = ""), begin = cumsum(c(1,

+ rep(450 - 1, 4))), end = cumsum(c(150, rep(450 -

+ 1, 4))))

> mygene = gene.new(gene.info, trans.structure, exons.coord)

Readers interested in more details on GeneStructure objects creation
are refered to the manual. Note that by default, the length of each exon is

1for a mapping program to use, see for instance RazerS at http://www.seqan.de/

projects/razers.html

2

http://www.seqan.de/projects/razers.html
http://www.seqan.de/projects/razers.html

computed according to its start and end position. However, due to the short
length of the reads some positions are ambiguous in the sense that a single
read mapps to more than one position in the genome. In the case where
certain positions cannot be mapped without ambiguities, the user can set a
n.uniq.hits column, which lists the number of reads that can be mapped
within an exon. For instance, if the 4th exon possesses 20 positions where a
read map is ambiguious to another position in the genome, the exon.coord
can be updated as follows (in this example experiment, reads have length
27bp, but the read length is an adjustable parameter):

> exons.coord$length = exons.coord$end - exons.coord$begin +

+ 1

> exons.coord$n.uniq.hits = exons.coord$length - 27 +

+ 1

> exons.coord$n.uniq.hits[4] = exons.coord$n.uniq.hits[4] -

+ 20

> mygene = gene.new(gene.info, trans.structure, exons.coord)

Let’s hypothesize we observe the following read counts on each of the
exons in the two conditions:

> exons.count.hek = genecount.new("mygene", c(32, 10,

+ 45, 56, 65))

> exons.count.bcells = genecount.new("mygene", c(23,

+ 30, 70, 42, 74))

1.1 Prediction of alternative splicing

Without doing hypothesis on the transcript structure, we can test for the
exons involved in alternative splicing events and perform a CASI routine on
our gene:

> CASI.hek = ASI.test(mygene, exons.count.hek)

> CASI.hek

CASI Chi-squared test for Alternative Splicing

data:
X-squared = 50.5238, df = 4, p-value = 2.807e-10

> which(CASI.hek$z.score <= -2)

3

[1] 2

> CASI.bcells = ASI.test(mygene, exons.count.bcells)

> CASI.bcells

CASI Chi-squared test for Alternative Splicing

data:
X-squared = 42.5811, df = 4, p-value = 1.264e-08

> which(CASI.bcells$z.score <= -2)

integer(0)

Here the second exon is detected as part of an alternative splicing event
with a zscore lower than -2 in HEK cells. No exons are detected with B
cells.

> DASI = ASI.test(mygene, exons.count.hek, exons.count.bcells,

+ cell = "two")

> which(abs(DASI$z.score) >= 2)

integer(0)

Although the computed pvalue is significant, no exon is detected as dif-
ferentially alternatively spliced between the two conditions.

1.2 Estimation of relative expression levels of known iso-
forms

Given transcript structures for a gene, we can estimate the different isoform
proportions for the HEK cell line.

> poem.hek = POEM.gene(mygene, exons.count.hek, read.length = 27)

> poem.hek$p.estim

Form1 Form2 Form3 Form4
0.16865305 0.12925760 0.04816192 0.65392743

> poem.hek$counts.estim

[1] 26.705214 30.700766 7.626155 146.967866

4

The function gene2gff can then be used to output the proportion to-
gether with the transcript structure as a gff file. One can verify the quality
of the fit with the bootstrap and the goodness of fit methods.
The quality score (Goodness of fit) evaluates the proposed relative expres-
sion of each transcript for the gene according to all reads for the gene.

> poem.hek$quality.score

Chi-squared test for given probabilities

data: counts
X-squared = 23.3589, df = 4, p-value = 0.0001073

> poem.hek$quality.score$p.value

[1] 0.0001073439

A small p value for the quality score is indicative of a very good estimate
of the algorithm, which in turn is a good indicator that the used transcript
structures fit the data well. When the quality score has a high p value, in
most of the cases, the transcript structures are incomplete or alternatively
the proposed background distribution is inappropriate.

A useful way of assessing the robustness of the estimate is to use the
implemented bootstrapping function Bootstrap.estimate.

> boot.sample = Bootstrap.estimate(poem.hek, nboot = 40)

> summary(boot.sample)

Form1 Form2 Form3
Min. :0.0928 Min. :0.04399 Min. :0.04445
1st Qu.:0.1264 1st Qu.:0.09816 1st Qu.:0.09414
Median :0.1733 Median :0.12330 Median :0.13276
Mean :0.1706 Mean :0.12821 Mean :0.14957
3rd Qu.:0.2014 3rd Qu.:0.15620 3rd Qu.:0.20158
Max. :0.2575 Max. :0.24713 Max. :0.32989

Form4
Min. :0.4070
1st Qu.:0.5151
Median :0.5502
Mean :0.5516
3rd Qu.:0.5982
Max. :0.6762

5

The bootstrap analysis shows, that the original estimate of Form3 in p.estim
likely underestimates the relative expression level of Form3. The bootstrap-
ping shows that Form2 and Form3 should be expressed around the same
level.

2 Future improvements and extensions

The future improvement planned for the SolaS package are:

1. integration of splice junction counts for the estimation of transcripts
proportions.

2. more general set of strategy for POEM estimation, integrating: paired-
end reads, allele specific expression...

6

	Alternative splicing analysis
	Prediction of alternative splicing
	Estimation of relative expression levels of known isoforms

